Numerical Modeling of the Micromechanics Damage of an Offshore Electrical High-Voltage Phase

Author:

Ech-Cheikh Fouad1,Drissi-Habti Monssef1ORCID

Affiliation:

1. Cosys Department, Université Gustave Eiffel, F-77447 Marne-la-Vallée, France

Abstract

Due to the strong growth of offshore renewable energies, research and engineering in this field is constantly expanding. One of the centerpieces of these technologies is the high-voltage electrical cable, generally made of copper, to transport the energy produced from the offshore farm to the onshore station. The critical nature of these cables lies in the proven resistance that they must demonstrate during stays underwater for several years, even decades, in difficult environmental conditions, which begin at the handling, shipping and underground burial stage. The marine environment can lead to deformation of the copper wires well beyond the limit of proportionality and, consequently, to breakage. Copper, although being an exceptional electrical conductor, has very poor mechanical properties. The plasticity generated by the excessive deformation of copper wires affects all of the physical properties of copper. When plasticity develops, electrical transport is affected and the heat within copper increases, but care should be given to not exceed 90 °C, as this would result in the shutdown of the cable with dramatic economic consequences. The work carried out in this article, which is part of the National Project EMODI as well as the European Project FLOW-CAM, aims at studying the mechanical behavior of the phase in order to correlate the deformation levels reached to the phase geometry as well as operating mechanisms of damage which reflect the proliferation of microstructural defects within the conductor. To do this, we propose a numerical model using Abaqus. Correct description of the effects of several parameters (geometry of the phase) and plasticity development on the performance of the phase were simulated and discussed.

Funder

FLOW-CAM (Floating Offshore Wind turbine Cable Monitoring) EraNet MarTERA Project

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3