Edge-Based Short-Term Energy Demand Prediction

Author:

Lekidis Alexios1ORCID,Papageorgiou Elpiniki I.1ORCID

Affiliation:

1. Department of Energy Systems, University of Thessaly, Gaiopolis Campus, 41500 Larissa, Greece

Abstract

The electrical grid is gradually transitioning towards being an interconnected area of the smart grid, where embedded devices operate in an autonomous manner without any human intervention. An important element for this transition is the energy demand prediction, since the needs for energy have substantially increased due to the introduction of new and heavy consumption sources, such as electric vehicles. Accurate energy demand prediction, especially for short-term durations (i.e., minutes to hours), allows grid operators to produce the substantial amount needed to satisfy the demand–response equilibrium and avoid peak electricity load conditions that may also lead to blackouts in densely populated areas. However, to achieve such an accuracy level, machine learning (ML) models require extensive training with historical measurements, which is usually resource intensive (e.g., in memory and processing power). Hence, deriving accurate predictions for short-term energy demands is challenging due to the absence of external factors such as environmental data from different regions and seasons and categorical values such as bank/bridging holidays in the ML model. Additionally, existing work focuses on ML model execution on Cloud platforms, which usually does not satisfy the real-time requirements of grid operators for short-term energy demand predictions. To address these challenges, this article presents a new method that considers environmental factors and categorical values to build an energy profile for each consumer in a multi-access edge computing (MEC) framework. The method is also based on the Temporal Fusion Transformer (TFT) ML model, which allows it to learn the temporal dependencies of the gathered historical measurements and predict energy demands with satisfying accuracy. The method is applied to a home energy management system testbed containing photovoltaic systems, smart meters, sensors and actuators for detecting environmental factors (i.e., temperature, humidity and radiation) as well as energy storage systems as an additional energy supply source. The MEC framework is deployed in data concentrator devices where the TFT ML model is executed with low resource requirements, ensuring additional security as the data do not leave the location where they are produced.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3