Research on the Coordinated Recovery Strategy Based on Centralized Electric Vehicle Charging Station

Author:

Wen Menghao1,Shi Huabo23,Li Baohong1ORCID,Jiang Qin1ORCID,Liu Tianqi1,Ding Chaofan1

Affiliation:

1. College of Electrical Engineering and Information Technology, Sichuan University, Chengdu 610065, China

2. Power Internet of Things Key Laboratory of Sichuan Province, Chengdu 610072, China

3. State Grid Sichuan Electric Power Research Institute, Chengdu 610041, China

Abstract

Electric vehicles have become a crucial component of modern power systems, possessing substantial energy reserves that can be important power supplies in blackouts where the power grid has weak reserves or limited connections to other grids. In order to clarify the technical conditions and control methods of the centralized electric vehicle charging station as the black-start power source of the power grid, assuming that the centralized electric vehicle charging station can be considered a single, large-scale energy storage system, this paper proposes a three-stage coordinated recovery strategy based on the centralized electric vehicle charging station. The strategy involves three distinct stages, beginning with the establishment of AC frequency and voltage by the electric vehicle charging station to initiate the auxiliary load of the power plant. In the middle stage, considering the traditional generator has been connected, the charging station’s control mode is set to provide constant active and reactive power output, providing extra voltage and frequency support to the grid-connected generating units and crucial loads. Finally, in the later stage, control strategies are tailored to the charging power stations’ capacities, with one group of additional oscillation damping controllers, while the other group adopts additional frequency control to decrease power disturbances, ensuring a smooth recovery of the power grid. A PSCAD/EMTDC-based model was constructed to verify the proposed coordinated grid recovery strategies. The results demonstrated that the centralized station successfully established the voltage and frequency of the AC system, and the designed additional controller also made the recovery process much more stable.

Funder

Opening Fund of Power Internet of Things Key Laboratory of Sichuan Province

General Project of Natural Science Foundation of Sichuan Province

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3