Study on the Spatial Classification of Construction Land Types in Chinese Cities: A Case Study in Zhejiang Province

Author:

Dong Lin,Li Jiazi,Xu Yingjun,Yang Youtian,Li Xuemin,Zhang Hua

Abstract

Identifying the land-use type and spatial distribution of urban construction land is the basis of studying the degree of exposure and the economic value of disaster-affected bodies, which are of great significance for disaster risk predictions, emergency disaster reductions, and asset allocations. Based on point of interest (POI) data, this study adopts POI spatialization and the density-based spatial clustering of applications with noise (DBSCAN) algorithm to accomplish the spatial classification of construction land. Zhejiang province is selected as a study area, and its construction land is divided into 11 land types using an accurate spatial classification method based on measuring the area of ground items. In the research, the POI dataset, which includes information, such as spatial locations and usage types, was constructed by big data cleaning and visual interpretation and approximately 620,000 pieces in total. The overall accuracy of the confusion matrix is 76.86%, which is greatly improved compared with that constructed with EULUC data (61.2%). In addition, compared with the official statistical data of 11 cities in Zhejiang Province, the differences between the calculated spatial proportions and statistics are not substantial. Meanwhile, the spatial characteristics of the studied land-use types are consistent with the urban planning data but with higher accuracy. The research shows that the construction land in Zhejiang Province has a high degree of land intensity, concentrated assets, and high economic exposure. The approach proposed in this study can provide a reference for city management including urbanization process, risk assessment, emergency management and asset allocation.

Funder

National Key Research and Development Program of China

Publisher

MDPI AG

Subject

Nature and Landscape Conservation,Ecology,Global and Planetary Change

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3