Abstract
Climate change has proved to be a threat to food security the world over. Using temperature and precipitation data, this paper examines the differential effects climate change has on different land uses in the Luvuvhu river catchment in South Africa. The paper uses the Normalised Difference Vegetation Index (NDVI) and Vegetation Condition Index (VCI), which were calculated from Landsat images, and the Standardised Precipitation Index (SPI) for a sample of years between 1980 and 2016 to assess how drought and flood frequency have affected the agricultural environment. The results indicate that the lowest SPI values were recorded in 1996/1997, 2001/2002 and 2014/2015, suggesting the occurrence of drought during these years, while the highest SPI values were recorded in 1997/1998, 2002/2003 and 2004/2005. The relationship between three-month SPI (SPI_3) and VCI was strongest in grassland, and subsistence farming areas with the correlation coefficients of 0.8166 (p = 0.0022) and −0.6172 (p = 0.0431), respectively, indicating that rainfall variability had a high negative impact on vegetation health in those land uses with shallow-rooted plants. The findings of this study are relevant to disaster management planning in South Africa, as well as development of farming response strategies for coping with climate hazards in the country.
Subject
Nature and Landscape Conservation,Ecology,Global and Planetary Change
Reference66 articles.
1. Identification and simulation of space–time variability of past hydrological drought events in the Limpopo River basin, southern Africa
2. The relationship between temperature and rainfall variability in the Levubu sub-catchment, South Africa;Nkuna;Int. J. Environ. Sci.,2016
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献