A Concise Review of Extraction and Characterization of Chondroitin Sulphate from Fish and Fish Wastes for Pharmacological Application

Author:

Urbi Zannat,Azmi Nina Suhaity,Ming Long ChiauORCID,Hossain Md. SanowerORCID

Abstract

Chondroitin sulphate (CS) is one of the most predominant glycosaminoglycans (GAGs) available in the extracellular matrix of tissues. It has many health benefits, including relief from osteoarthritis, antiviral properties, tissue engineering applications, and use in skin care, which have increased its commercial demand in recent years. The quest for CS sources exponentially increased due to several shortcomings of porcine, bovine, and other animal sources. Fish and fish wastes (i.e., fins, scales, skeleton, bone, and cartilage) are suitable sources of CS as they are low cost, easy to handle, and readily available. However, the lack of a standard isolation and characterization technique makes CS production challenging, particularly concerning the yield of pure GAGs. Many studies imply that enzyme-based extraction is more effective than chemical extraction. Critical evaluation of the existing extraction, isolation, and characterization techniques is crucial for establishing an optimized protocol of CS production from fish sources. The current techniques depend on tissue hydrolysis, protein removal, and purification. Therefore, this study critically evaluated and discussed the extraction, isolation, and characterization methods of CS from fish or fish wastes. Biosynthesis and pharmacological applications of CS were also critically reviewed and discussed. Our assessment suggests that CS could be a potential drug candidate; however, clinical studies should be conducted to warrant its effectiveness.

Publisher

MDPI AG

Subject

Microbiology (medical),Molecular Biology,General Medicine,Microbiology

Reference125 articles.

1. Antimicrobial Role of Glycosaminoglycans: Beyond Bacterial Adhesion to Host Cell;Urbi;Proceedings of the 1st International Electronic Conference on Antibiotics,2021

2. Waste to wealth: Alternative source of glycosaminoglycans (GAGs) from sea food waste;Idrus;IIOAB J.,2016

3. Review: Glycosaminoglycans (GAGs) versus Cancer

4. Beyond anticoagulant: Heparin as a potential anti-cancer agent

5. Reactive Oligosaccharides for Surface Derivatisation;Azmi,2013

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3