Real-Time Weighted Data Fusion Algorithm for Temperature Detection Based on Small-Range Sensor Network

Author:

Zhang Ziling,Nan Xinyuan,Wang Cong

Abstract

Biological oxidation pretreatment, which can improve the yield of gold, is the main gold extraction technology for disposing refractory gold ore with high arsenic and sulfur. The temperature of the oxidation tank influences the oxidation efficiency between the ore pulp and bacteria, including the yield of gold. Therefore, measurement has consistently been an important subject for researchers. As an effective data processing method, data fusion has been used extensively in many fields of industrial production. However, the interference of equipment or external factors such as the diurnal temperature difference or powerful wind may constantly increase measurement errors and damage certain sensors, which may transmit error data. These problems can be solved by following a pretreatment process. First, we establish a heat transfer mechanism model. Second, we design a small-range sensor network for the pretreatment process and present a layered fusion structure of sharing sensors using a multi-connected fusion structure. Third, we introduce the idea of iterative operation in data processing. In addition, we use prior data for predicting state values twice in order to improve the effectiveness of extended Kalman filtering in one time step. This study also proposes multi-fading factors on the basis of a weighted fading memory index to adjust the prediction error covariance. Finally, the state estimation accuracy of each sensor can be used as a weighting principle for the predictive confidence of each sensor by adding a weighting factor. In this study, the performance of the proposed method is verified by simulation and compared with the traditional single-sensor method. Actual industrial measurement data are processed by the proposed method for the equipment experiment. The performance index of the simulation and the experiment shows that the proposed method has a higher global accuracy than the traditional single-sensor method. Simulation results show that the accuracy of the proposed method has a 55% improvement upon that of the traditional single-sensor method, on average. In the equipment experiment, the accuracy of the industrial measurement improved by 37% when using the proposed method.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3