Crustal Structures of the Qimantagh Metallogenic Belt in the Northern Tibetan Plateau from Magnetotelluric Data and Their Correlation to the Distribution of Mineral Deposits

Author:

He Lanfang1ORCID,Di Qinyun2ORCID,Wang Zhongxing2ORCID,Lai Jianqing3,Xue Guoqiang1,Guo Wenbo4

Affiliation:

1. Key Laboratory of Mineral Resources, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China

2. CAS Engineering Laboratory for Deep Resources Equipment and Technology, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China

3. Key Laboratory of Metallogenic Prediction of Nonferrous Metals and Geological Environment Monitoring, Ministry of Education, School of Geosciences and Info-Physics, Central South University, Changsha 410083, China

4. Xi’an Geophysical and Geochemical Exploration Corporation, Bureau of Geological Exploration for Nonferrous Metals in Northwest China, Xi’an 710068, China

Abstract

Crustal structure and fluid or melt originating in the deep crust and mantle are critical in regional magmatic mineral systems. However, the crustal structure and the processes that entrain and focus fluids from a deep-source region to a metallogenic belt remain relatively undisclosed. We present a magnetotelluric (MT) study of the eastern Qimantagh Metallogenic Belt (QMB) in the northern Tibetan Plateau. Data from 33 MT stations in two sections and 7 dispersed stations are acquired using a surface electromagnetic prospecting (SEP) system in frequency band ranges from 320 Hz to 0.00034 Hz. Data are converted by Bostick conversion and two-dimensional (2D) nonlinear conjugate gradient inversion. Our MT results reveal the geoelectrical crustal structure of the QMB, which consists of a southern low-resistivity domain that reflects the Kumukuri rift, a high-resistivity middle domain that represents the southern QMB in the central Kunlun belt, and a northern low-resistivity domain that covers the northern QMB and southwestern Qaidam block. We present a comprehensive tectonic and geophysical model of QMB based on the MT interpretation and geological analysis. We infer the high-resistivity domain as a reflection of a rigid crust and detached lithospheric mantle, this belt separate the QMB into northern and southern QMB. Most of the mineral deposits are found in the northern low-resistivity domain of QMB. Our study and findings provide an understanding of the tectonic evolution of the northern Tibetan Plateau, the crustal structure that controls the temporal and spatial distribution of magmatic rocks, and the geological signature associated with mineral deposits.

Funder

Second Tibetan Plateau Scientific Expedition and Research Program

Key Research Program of the Chinese Academy of Sciences

Publisher

MDPI AG

Subject

Geology,Geotechnical Engineering and Engineering Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3