A Prediction Method of Compacted Rock Hydraulic Permeability Based on the MGEMTIP Model

Author:

Tong Xiaolong12,Yan Liangjun2,Xiang Kui2ORCID

Affiliation:

1. National Engineering Research Center for Oil & Gas Drilling and Completion Technology, School of Petroleum Engineering, Yangtze University, Wuhan 430100, China

2. Key Laboratory of Exploration Technologies for Oil and Gas Resources, Yangtze University, Ministry of Education, Wuhan 430100, China

Abstract

The permeability of the fluid-bearing rock is an important parameter for reservoir prediction. The Kozeny-Carman (K-C) formulation based on electrical measurements effectively characterizes the permeability-resistivity relationship of rocks with a single mineral composition or high porosity. The complex pore structure and mineral composition of compacted reservoirs affect induced polarization (IP) characteristics, indirectly limiting the applicability of conventional electrical K-C models. The permeability of fluid-bearing rocks is an important parameter for reservoir prediction. The theoretical chargeability of the modified generalized effective medium theory of induced polarization (MGEMTIP) model includes the effects of various conductive minerals. Due to the disconnection assumption of the disturbed medium in the MGEMTIP, there is a significant difference between the theoretical chargeability and the measured chargeability, and the difference is a sensitive parameter of rock permeability. A semi-empirical reservoir permeability prediction model is proposed based on the MGEMTIP. Theoretically and experimentally, the prediction model based on MGEMTIP is compared with the two electrical K-C models. Under the condition that the rock does not contain low-resistivity minerals, the prediction model based on MGEMTIP is theoretically equivalent to the K-C model. The experimental results show that this prediction model is more suitable for low-porosity and low-permeability rocks containing low-resistivity minerals, and the prediction results can be effectively restricted to the same order of magnitude. From the perspective of differences between model assumptions and natural rocks, the prediction model provides a semi-empirical relationship between complex mineral IP characteristics and permeability. Combined with the geological information of the survey area, the permeability prediction model can provide a theoretical basis for reservoir permeability prediction based on electromagnetic exploration.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Geology,Geotechnical Engineering and Engineering Geology

Reference35 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3