Assessing the Baseline Uranium in Groundwater around a Proposed Uraninite Mine and Identification of a Nearby New Reserve

Author:

Bhavya Ravinder1,Sivaraj Kaveri1,Elango Lakshmanan1ORCID

Affiliation:

1. Department of Geology, Anna University, Chennai 600025, India

Abstract

The presence of uranium in groundwater is a cause of concern all over the world. In mineralized regions where elevated concentrations of uranium are possible in groundwater, mining activities can further degrade the water quality. Hence, it is essential to document the baseline uranium concentration in groundwater before the commencement of mining. This study was carried out with the objective of assessing the concentration of uranium in groundwater around a proposed uraninite mining site in the Gogi region, Karnataka, India. Gogi is a village in the Yadgir district of Karnataka where groundwater is the main source of water for domestic needs. The uranium mineralized zone in this region occurs along the major E-W trending Gogi-Kurlagere fault at a depth of about 150 m. Groundwater samples were collected every three months from January 2020 to October 2020 from 52 wells located in this area. The concentration of uranium in groundwater ranged from 1.5 ppb to 267 ppb. The USEPA and WHO have recommended a permissible limit of 30 ppb, while the Atomic Energy Regulatory Board of India has a limit of 60 ppb for the purpose of drinking water. Based on these permissible limits for uranium in drinking water, concentrations exceeded the limit in about 25% of wells within 20 km from the mineralized region. Wells present in the granitic and limestone terrain exhibited higher concentrations of uranium in this area. Uranium concentration in groundwater changes depending on the degree of weathering, lithology, and rainfall recharge. This study will serve as a baseline and will help to assess the impact of mining activities in this region in the future. In wells where the uranium concentration exceeds permissible limits, it is suggested not to use groundwater directly for drinking purposes. These sites need to be explored further for the possible presence of uranium-bearing minerals.

Funder

Department of Atomic Energy

Publisher

MDPI AG

Subject

Geology,Geotechnical Engineering and Engineering Geology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3