Mid-Infrared (MIR) Spectroscopy of Silicate Glasses as Analogs for Mercury’s Surface: The Influence of Grain Size

Author:

Pisello Alessandro1,Bisolfati Matteo1,Poggiali Giovanni23ORCID,Tolomei Pietro1,Braschi Eleonora4ORCID,Brucato John Robert3ORCID,Perugini Diego1

Affiliation:

1. Department of Physics and Geology, University of Perugia, 06123 Perugia, Italy

2. LESIA-Observatoire de Paris, Université PSL, CNRS, Sorbonne Université, Université de Paris, 5 Place Jules Janssen, 92190 Meudon, France

3. INAF-Astrophysical Observatory of Arcetri, Largo E. Fermi n. 5, 50125 Florence, Italy

4. CNR-IGG Sezione di Firenze, Via Giorgio La Pira 4, 50121 Florence, Italy

Abstract

Volcanic products are widely present on Mercury: they occur as low-viscosity lava flows, but traces of ash deriving from explosive volcanism are also observed. Silicate glasses represent a major component in volcanic products, and it is likely that the fine-powdered regolith on Mercury contains a non-negligible fraction of glassy material. In the laboratory, we have reproduced a Mercury-like silicate glass, from which we have obtained 14 powdered samples with different granulometric characteristics: 8 samples are extremely sorted with grain sizes ranging from 25 to 425 µm, and 6 samples consist of less sorted powders with normal distributions, varying mean values (30, 95, and 160 µm) and standard deviation (40 and 80 µm). The reflectance of samples was investigated in the mid-infrared (MIR) region: we observe how the reflectance intensity increases with grain size, and the presence of extremely fine material defines the emergence of the transparency feature (TF). We provide reference data with qualitative observations and quantitative parameterization of spectral characteristics; in particular, we observe how a small fraction of fine material can greatly influence the spectral response of coarser powders. Results of this work will be crucial for the interpretation of data collected by the BepiColombo mission, but need to be integrated with other possible Mercurian compositions.

Funder

ASI

Centre national d’études spatiales

Publisher

MDPI AG

Subject

Geology,Geotechnical Engineering and Engineering Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3