Affiliation:
1. State Key Laboratory of Mining Response and Disaster Prevention and Control in Deep Coal Mines, College of Materials Science and Engineering, Anhui University of Science and Technology, Huainan 232001, China
Abstract
There are still many problems in the stirring dissolution of flocculants: The law of stirring dissolution of flocculants with different molecular weights is not clear, the microstructure of settling floc with different particle sizes of coal slime is still to be explored, and how to apply the law of flocculant dissolution to industrialization? To solve these problems, firstly, mechanical stirring dissolution tests are carried out on anionic polyacrylamide (APAM) with different molecular weights to explore the stirring dissolution law of APAM with 3–25 million molecular weights. Results indicated that the optimal stirring speed of APAM with 3–6 million molecular weight is 800 r/min. The optimal stirring speed of 8–16 million molecular weight APAM is 600 r/min. The optimal stirring speed of 18–25 million molecular weight APAM is 800 r/min. The stirring power formula for APAM dissolution is improved by fitting the experimental data of 3–25 million molecular weight APAM stirring dissolution. Secondly, through APAM performance test, it is verified that the solubility of powdered APAM is the best under optimal solution. Thirdly, through the image measurement and analysis test of settling floc of coal slime, the change law of equivalent diameter of settling floc of different particle sizes of coal slime under the optimal dissolution parameters are explored. Results showed that when the mixing speed is 600 r/min, the equivalent diameter of −0.5 mm slime settling floc is the largest. When the mixing speed is 200 r/min or 400 r/min, the equivalent diameters of 0.5–0.25 mm, 0.25–0.125 mm, 0.125–0.075 mm, 0.075–0.045 mm and −0.045 mm slime settling floc are the largest. The equivalent diameter is positively correlated with the size of slime, and the equivalent diameter of −0.045 mm slime settling floc is the largest. The size of slime is the dominant factor in the change of fractal dimension. The fractal dimension of −0.5 mm slime settling floc is the largest, and the fractal dimension is little affected by mixing speed. Finally, the relationship between the important dissolution parameters of the APAM stirring dissolution test is numerically fitted. In view of the different geometrical parameters of the stirring barrel, a method of deducing the dissolution and stirring time of industrial flocculants is proposed.
Funder
Natural Sciences Foundation of Anhui Province
Open Foundation of State Key Laboratory of Mining Response and Disaster Prevention and Control in Deep Coal Mines
University Scientific Research Project of the Education Department of Anhui Province
University Excellent Talents Training Funding Project of the Education Department of Anhui Province
Subject
Geology,Geotechnical Engineering and Engineering Geology
Reference10 articles.
1. Internal structure evolution characteristics of high concentration unclassified tailings mortar containing APAM;Wang;Chin. J. Nonferrous Met.,2022
2. Experimental and molecular simulation study of the adsorption behavior of APAM at water/kaolinite innterface;Min;J. China Univ. Min. Technol.,2022
3. Enhanced flotation selectivity of fine coal from kaolinite by anionic polyacrylamide pre-conditioning;Xia;J. Mol. Liq.,2021
4. Effect of Shearing Forces and Flocculant Overdose on Filler Flocculation Mechanisms and Floc Properties;Blanco;Ind. Eng. Chem. Res.,2005
5. Flocculation and reflocculation of clay suspension by different polymer systems under turbulent conditions;Yoon;J. Colloid Interface Sci.,2004
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献