Integrated Interpretation of Electrical Resistivity Tomography for Evaporite Rock Exploration: A Case Study of the Messinian Gypsum in the Sorbas Basin (Almería, Spain)

Author:

Pérez-López AlbertoORCID,García-López Miguel,González-Gil Miguel

Abstract

In this study, we conduct an investigation of the Sorbas Basin (Almería, Spain) on the Messinian gypsum unit using geophysical prospecting methods. Geophysical electrical resistivity tomography (ERT) methods were applied to study the subsurface of this gypsum unit, the exploitation of which could be of interest economically, with different commercial specifications for alabastrine and selenitic gypsums. For the interpretation of the different ERT images, the data for the surface geology, borehole cores, and seismic refraction conducted at a point within the ERT profiles were used. The results obtained from this investigation can be used as a reference for other similar studies in other regions. It was observed that selenitic gypsum is more resistive than alabastrine gypsum; therefore, the diagenetic processes of dehydration (anhydritization) and hydration (gypsification) increase the “percolation” phenomenon through possibly ensuring a greater connectivity of the shale matrix. Fracturing and moisture can be used to fully determine the resistivity of the purest and most resistive gypsum, to the point of considerably lowering the resistivity in an entire area affected by fracturing. The use of different tests with different lengths for the same profile can help one better understand the structure of the gypsum body in the subsurface, especially when there are shale intercalations or more- or less-pure levels of gypsum that do not reach a value of a few meters in thickness, because these thinner levels of a few meters are not defined in the ERT images when the test is performed at depths of up to 75 m.

Publisher

MDPI AG

Subject

Geology,Geotechnical Engineering and Engineering Geology

Reference51 articles.

1. The Spanish building crisis and its effect in the gypsum quarry production (1998–2012);Herrero;Resour. Policy,2013

2. García Guinea, J., and Martínez Frías, J. (1992). Recursos Minerales de España, CSIC. Textos Universitarios nº 15.

3. Warren, J. (1999). Their Evolution and Economics, Blackwell Science.

4. Evaporative systems and diagenetic patterns in the Calatayud Basin (Miocene, central Spain);Rossell;Sedimentology,2000

5. Meganodular anhydritizacion: A new mechanism of gypsum to anhydrite conversion (Palaeogene_neogene, Ebro Basin, North-east Spain);Rossell;Sedimentology,2012

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3