Affiliation:
1. Key Laboratory of High-Temperature and High-Pressure Study of the Earth’s Interior, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
2. University of Chinese Academy of Sciences, Beijing 100049, China
Abstract
In situ Raman scattering and electrical conductivity experiments have been performed to investigate the structural phase transitions of calcite during the compressed and decompressed processes in a diamond anvil cell at temperatures of 298–873 K and pressures up to 19.7 GPa. Upon compression, calcite (CaCO3-I phase) underwent three structural phase transitions from CaCO3-I to CaCO3-II phases at 1.6 GPa, from CaCO3-II to CaCO3-III phases at 2.2 GPa, and from CaCO3-III to CaCO3-VI phases at 16.8 GPa under room temperature conditions, which were evidenced by the evolution of Raman peaks, as well as the discontinuities in the pressure-dependent Raman shifts and electrical conductivity. Upon decompression, the structural phase transitions from CaCO3-VI to CaCO3-III to CaCO3-II to CaCO3-I phases took place at the respective pressures of 5.4, 1.5, and 0.4 GPa, indicating the reversibility of calcite. Furthermore, an obvious ~11 GPa of pressure hysteresis was detected in the CaCO3-VI to CaCO3-III phase transition, whereas other reverse phase transition pressures were very close to those of compressed results. At three given representative pressure conditions (i.e., 10.5, 12.5, and 13.8 GPa), a series of electrical conductivity experiments were performed at temperature ranges of 323–873 K to explore the temperature-dependent relation of CaCO3-III to CaCO3-VI structural phase transition. With increasing pressure, the transition temperature between CaCO3-III and CaCO3-VI phases gradually decreases, which reveals an obviously negative temperature-pressure relation, i.e., P (GPa) = 19.219 (±1.105) − 0.011 (±0.002) T (K). Our acquired phase diagram of calcite can be employed to understand the high-pressure structural transitions and phase stability for carbonate minerals along various subducting slabs in the deep Earth’s interior.
Funder
NSF of China
Youth Innovation Promotion Association of CAS
Subject
Geology,Geotechnical Engineering and Engineering Geology
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献