Genome-Wide Association Mapping Identifies New Candidate Genes for Cold Stress and Chilling Acclimation at Seedling Stage in Rice (Oryza sativa L.)

Author:

Li JianguoORCID,Khatab Ahmed AdelORCID,Hu Lihua,Zhao Liyan,Yang JiangyiORCID,Wang LingqiangORCID,Xie GuoshengORCID

Abstract

Rice (Oryza sativa L.) is a chilling-sensitive staple food crop, and thus, low temperature significantly affects rice growth and yield. Many studies have focused on the cold shock of rice although chilling acclimation is more likely to happen in the field. In this paper, a genome-wide association study (GWAS) was used to identify the genes that participated in cold stress and chilling accumulation. A total of 235 significantly associated single-nucleotide polymorphisms (SNPs) were identified. Among them, we detected 120 and 88 SNPs for the relative shoot fresh weight under cold stress and chilling acclimation, respectively. Furthermore, 11 and 12 quantitative trait loci (QTLs) were identified for cold stress and chilling acclimation, respectively, by integrating the co-localized SNPs. Interestingly, we identified 10 and 15 candidate genes in 11 and 12 QTLs involved in cold stress and chilling acclimation, respectively, and two new candidate genes (LOC_Os01g62410, LOC_Os12g24490) were obviously up-regulated under chilling acclimation. Furthermore, OsMYB3R-2 (LOC_Os01g62410) that encodes a R1R2R3 MYB gene was associated with cold tolerance, while a new C3HC4-type zinc finger protein-encoding gene LOC_Os12g24490 was found to function as a putative E3 ubiquitin-protein ligase in rice. Moreover, haplotype, distribution, and Wright’s fixation index (FST) of both genes showed that haplotype 3 of LOC_Os12g24490 is more stable in chilling acclimation, and the SNP (A > T) showed a difference in latitudinal distribution. FST analysis of SNPs in OsMYB3R-2 (LOC_Os01g62410) and LOC_Os12g24490 indicated that several SNPs were under selection in rice indica and japonica subspecies. This study provided new candidate genes in genetic improvement of chilling acclimation response in rice.

Funder

State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources of China

National Key Research and Development Program of China

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3