Magnetic Multi-Enzymatic System for Cladribine Manufacturing

Author:

Cruz Guillermo,Saiz Laura Pilar,Bilal MuhammadORCID,Eltoukhy Lobna,Loderer ChristophORCID,Fernández-Lucas JesúsORCID

Abstract

Enzyme-mediated processes have proven to be a valuable and sustainable alternative to traditional chemical methods. In this regard, the use of multi-enzymatic systems enables the realization of complex synthetic schemes, while also introducing a number of additional advantages, including the conversion of reversible reactions into irreversible processes, the partial or complete elimination of product inhibition problems, and the minimization of undesirable by-products. In addition, the immobilization of biocatalysts on magnetic supports allows for easy reusability and streamlines the downstream process. Herein we have developed a cascade system for cladribine synthesis based on the sequential action of two magnetic biocatalysts. For that purpose, purine 2′-deoxyribosyltransferase from Leishmania mexicana (LmPDT) and Escherichia coli hypoxanthine phosphoribosyltransferase (EcHPRT) were immobilized onto Ni2+-prechelated magnetic microspheres (MagReSyn®NTA). Among the resulting derivatives, MLmPDT3 (activity: 11,935 IU/gsupport, 63% retained activity, operational conditions: 40 °C and pH 5–7) and MEcHPRT3 (12,840 IU/gsupport, 45% retained activity, operational conditions: pH 5–8 and 40–60 °C) emerge as optimal catalysts for further synthetic application. Moreover, the MLmPDT3/MEcHPRT3 system was biochemically characterized and successfully applied to the one-pot synthesis of cladribine under various conditions. This methodology not only displayed a 1.67-fold improvement in cladribine synthesis (compared to MLmPDT3), but it also implied a practically complete transformation of the undesired by-product into a high-added-value product (90% conversion of Hyp into IMP). Finally, MLmPDT3/MEcHPRT3 was reused for 16 cycles, which displayed a 75% retained activity.

Funder

Spanish Ministry of Science and Innovation

National Science Centre, Poland

Deutsche Forschungsgemeinschaft

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3