The N-Linked Glycosylation Site N191 Is Necessary for PKA Signal Transduction in Eel Follicle-Stimulating Hormone Receptor

Author:

Byambaragchaa Munkhzaya,Park Hong-Kyu,Kim Dae-Jung,Lee Jong-HyukORCID,Kang Myung-Hwa,Min Kwan-SikORCID

Abstract

The follicle-stimulating hormone receptor (FSHR) contains several N-linked glycosylation sites in its extracellular region. We conducted the present study to determine whether conserved glycosylated sites in eel FSHR are necessary for cyclic adenosine monophosphate (cAMP) signal transduction. We used site-directed mutagenesis to induce four mutations (N120Q, N191Q, N272Q, and N288Q) in the N-linked glycosylation sites of eel FSHR. In the eel FSHR wild-type (wt), the cAMP response was gradually increased in a dose-dependent manner (0.01–1500 ng/mL), displaying a high response (approximately 57.5 nM/104 cells) at the Rmax level. Three mutants (N120Q, N272Q, and N288Q) showed a considerably decreased signal transduction as a result of high-ligand treatment, whereas one mutant (N191Q) exhibited a completely impaired signal transduction. The expression level of the N191Q mutant was only 9.2% relative to that of the eel FSHR-wt, indicating a negligible expression level. The expression levels of the N120Q and N272Q mutants were approximately 35.9% and 24% of the FSHG-wt, respectively. The N288Q mutant had an expression level similar to that of the eel FSHR-wt, despite the mostly impaired cAMP responsiveness. The loss of the cell surface agonist-receptor complexes was very rapid in the cells expressing eel FSHR-wt and FSHR-N288Q mutants. Specifically, the N191Q mutant was completely impaired by the loss of cell surface receptors, despite treatment with a high concentration of the agonist. Therefore, we suggest that the N191 site is necessary for cAMP signal transduction. This finding implies that the cAMP response, mediated by G proteins, is directly related to the loss of cell surface receptors as a result of high-agonist treatment.

Funder

Korean Research Foundation Program

National Institute of Fisheries Science

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3