Hybrid Gold Nanorod-Based Nanoplatform with Chemo and Photothermal Activities for Bimodal Cancer Therapy

Author:

Arellano-Galindo Lilia,Villar-Alvarez EvaORCID,Varela Alejandro,Figueroa Valeria,Fernandez-Vega JavierORCID,Cambón Adriana,Prieto GerardoORCID,Barbosa SilviaORCID,Taboada PabloORCID

Abstract

Metal nanoparticles (NPs), particularly gold nanorods (AuNRs), appear as excellent platforms not only to transport and deliver bioactive cargoes but also to provide additional therapeutic responses for diseased cells and tissues and/or to complement the action of the carried molecules. In this manner, here, we optimized a previous developed metal-based nanoplatform composed of an AuNR core surrounded by a polymeric shell constructed by means of the layer-by-layer approach, and in which very large amounts of the antineoplasic drug doxorubicin (DOXO) in a single loading step and targeting capability thanks to an outer hyaluronic acid layer were incorporated by means of an optimized fabrication process (PSS/DOXO/PLL/HA-coated AuNRs). The platform retained its nanometer size with a negative surface charge and was colloidally stable in a range of physiological conditions, in which only in some of them some particle clustering was noted with no precipitation. In addition, the dual stimuli-responsiveness of the designed nanoplatform to both endogenous proteases and external applied light stimuli allows to perfectly manipulate the chemodrug release rates and profiles to achieve suitable pharmacodynamics. It was observed that the inherent active targeting abilities of the nanoplatfom allow the achievement of specific cell toxicity in tumoral cervical HeLa cells, whilst healthy ones such as 3T3-Balb fibroblast remain safe and alive in agreement with the detected levels of internalization in each cell line. In addition, the bimodal action of simultaneous chemo- and photothermal bioactivity provided by the platform largely enhances the therapeutic outcomes. Finally, it was observed that our PSS/DOXO/PLL/HA-coated AuNRs induced cell mortality mainly through apoptosis in HeLa cells even in the presence of NIR light irradiation, which agrees with the idea of the chemo-activity of DOXO predominating over the photothermal effect to induce cell death, favoring an apoptotic pathway over necrosis for cell death.

Funder

Agencia Estatal de Investigación

ERDF

CONACYT

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3