Changes in Ovulation-Related Gene Expression during Induced Ovulation in the Amur Sturgeon (Acipenser schrenckii) Ovarian Follicles

Author:

Surugaya Ryohei,Hasegawa Yuya,Adachi Shinji,Ijiri Shigeho

Abstract

The luteinizing hormone (LH) and maturation-inducing steroids (MIS), such as 17α,20β-dihydroxy-4-pregnen-3-one, regulate the final oocyte maturation in teleosts. Oocyte maturational competence (OMC) and ovulatory competence measure the sensitivity to MIS for oocyte maturation and ovulation, respectively. However, the molecular mechanisms underlying the acquisition of ovulatory competence remain unknown. Sturgeons are an excellent research model for investigating these mechanisms. We examined the seasonal profiles of OMC and ovulatory competence in vitro and the expression of 17 ovulation-related gene candidates using quantitative PCR in Amur sturgeon ovarian follicles. The ovulatory competence was induced by the LH-releasing hormone analog (LHRHa) priming injection after acquiring the OMC, which was spontaneously induced in spring or autumn. Seven genes, including the tissue-type plasminogen activator (plat), were enhanced following the LHRHa priming injection in ovarian follicles sampled from anovulated and ovulated fish. The activin receptor type 1 (acvr1) and prostaglandin G/H synthase 2 (ptgs2) were only upregulated in ovulated fish. Our results suggest that plat/plasmin and prostaglandin (PG)/PG receptor systems are essential for sturgeon ovulation, similar to other vertebrates. Notably, successful ovulation depends on a sufficient PG synthesis, and mediators activating the PG/PG receptor system are essential for acquiring the ovulatory competence. We provide the first report of ovulation-related gene alterations in the ovarian follicles of Amur sturgeons.

Funder

Japan Society for the Promotion of Science

Japan Science and Technology Agency

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3