Deep Association between Transglutaminase 1 and Tissue Eosinophil Infiltration Leading to Nasal Polyp Formation and/or Maintenance with Fibrin Polymerization in Chronic Rhinosinusitis with Nasal Polyps

Author:

Sonoyama ToruORCID,Ishino TakashiORCID,Takemoto KotaORCID,Yamato Kensuke,Oda Takashi,Nishida Manabu,Horibe Yuichiro,Chikuie Nobuyuki,Kono Takashi,Taruya Takayuki,Hamamoto TakaoORCID,Ueda Tsutomu,Takeno SachioORCID

Abstract

Transglutaminase (TGM) isoform catalyze the cross-linking reaction of identical or different substrate proteins. Eosinophil has been recognized in chronic rhinosinusitis with nasal polyps (CRSwNP) forming tissue eosinophil in nasal polyp (NP), and TGM isoforms are suggested to be associated with a critical role in asthma and other allergic conditions. The aim of this study was to reveal the association of specific TGM isoform with both the tissue eosinophil infiltration deeply concerning with the intractable severity of CRSwNP and the fibrin polymerization ability of TGM isoform associated with the tissue eosinophil infiltration, which lead to NP formation and/or maintenance in CRSwNP. NP tissues (CRSwNP group) and uncinate process (UP) (control group) were collected from patients with CRSwNP and control subjects. We examined: (1) the expression level of TGM isoforms by using a real-time polymerase chain reaction (PCR) and the comparison to the issue eosinophil count in the CRSwNP group, (2) the location of specific TGM isoform in the mucosal tissue using immunohistochemistry, (3) the inflammatory cell showing the colocalization of specific TGM isoform in Laser Scanning Confocal Microscopy (LSCM) imaging, and (4) the fibrin polymerase activity of specific TGM isoform using sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). A certain level of TGM 1, 2, 3, 5 expression was present in both the CRSwNP group and the control group. Only TGM 1 expression showed a positive significant correlation with the tissue eosinophil count in the CRSwNP group. The localization of TGM 1 in NP (CRSwNP) laid mainly in a submucosal layer as inflammatory cells and was at the cytoplasm in the tissue eosinophil. Fibrin polymerase activity of TGM 1 showed the same polymerase ability of factor XIIIA. TGM 1 might influence the NP formation and/or maintenance in CRSwNP related to the tissue eosinophil infiltration, which formed fibrin mesh composing NP stroma.

Funder

Japan Society for the Promotion of Science KAKENHI

Health Labor Sciences Research

Research Collaboration Fund with Universal Sound Design Inc.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3