Abstract
Cyclodextrin derivatives constitute a powerful class of auxiliary agents for the discrimination of apolar chiral substrates. Both host–guest inclusion phenomena and interactions with the derivatizing groups located on the surface of the macrocycle could drive the enantiodiscrimination; thus, it is important to understand the role that these processes play in the rational design of new chiral selectors. The purpose of this study is to compare via nuclear magnetic resonance (NMR) spectroscopy the efficiency of silylated-acetylated α-, β-, and γ-cyclodextrins in the chiral discrimination of 1,1,1,3,3-pentafluoro-2-(fluoromethoxy)-3-methoxypropane (compound B) and methyl 2-chloropropionate (MCP). NMR DOSY (Diffusion Ordered SpectroscopY) experiments were conducted for the determination of the bound molar fractions and the association constants, whereas ROESY (Rotating-frame Overhauser Enhancement SpectroscopY) measurements provided information on the hosts’ conformation and on the interaction phenomena with the guests. Compound B, endowed with fluorinated moieties, is not deeply included due to attractive Si-F interactions occurring at the external surface of the cyclodextrins. Therefore, a low selectivity toward the size of cyclodextrin cavity is found. By contrast, enantiodiscrimination of MCP relies on the optimal fitting between the size of the guest and that of the cyclodextrin cavity.
Subject
Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献