Chiral Discrimination Mechanisms by Silylated-Acetylated Cyclodextrins: Superficial Interactions vs. Inclusion

Author:

Balzano FedericaORCID,Uccello-Barretta GloriaORCID,Sicoli Giuseppe,Vanni Letizia,Recchimurzo AlessandraORCID,Aiello FedericaORCID

Abstract

Cyclodextrin derivatives constitute a powerful class of auxiliary agents for the discrimination of apolar chiral substrates. Both host–guest inclusion phenomena and interactions with the derivatizing groups located on the surface of the macrocycle could drive the enantiodiscrimination; thus, it is important to understand the role that these processes play in the rational design of new chiral selectors. The purpose of this study is to compare via nuclear magnetic resonance (NMR) spectroscopy the efficiency of silylated-acetylated α-, β-, and γ-cyclodextrins in the chiral discrimination of 1,1,1,3,3-pentafluoro-2-(fluoromethoxy)-3-methoxypropane (compound B) and methyl 2-chloropropionate (MCP). NMR DOSY (Diffusion Ordered SpectroscopY) experiments were conducted for the determination of the bound molar fractions and the association constants, whereas ROESY (Rotating-frame Overhauser Enhancement SpectroscopY) measurements provided information on the hosts’ conformation and on the interaction phenomena with the guests. Compound B, endowed with fluorinated moieties, is not deeply included due to attractive Si-F interactions occurring at the external surface of the cyclodextrins. Therefore, a low selectivity toward the size of cyclodextrin cavity is found. By contrast, enantiodiscrimination of MCP relies on the optimal fitting between the size of the guest and that of the cyclodextrin cavity.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3