Germplasm Screening Using DNA Markers and Genome-Wide Association Study for the Identification of Powdery Mildew Resistance Loci in Tomato

Author:

Park JiyeonORCID,Lee SiyoungORCID,Choi Yunseo,Park Girim,Park Seoyeon,Je Byoungil,Park YounghoonORCID

Abstract

Powdery mildew (PM), caused by Oidium spp. in tomato, is a global concern that leads to diminished yield. We aimed to evaluate previously reported DNA markers linked to powdery mildew resistance (PMR) and identify novel quantitative trait loci (QTLs) for PMR through a genome-wide association study in tomato. Sequencing analysis of the internal transcribed spacer (ITS) of a PM strain (PNU_PM) isolated from Miryang, Gyeongnam, led to its identification as Oidium neolycopersici. Thereafter, a PM bioassay was conducted for a total of 295 tomato accessions, among which 24 accessions (4 S. lycopersicum accessions and 20 accessions of seven wild species) showed high levels of resistance to PNU_PM. Subsequently, we genotyped 11 markers previously linked to PMR in 56 accessions. PMR-specific banding patterns were detected in 15/22 PMR accessions, while no such bands were observed in the powdery mildew-susceptible accessions. The genome-wide association study was performed using TASSEL and GAPIT, based on the phenotypic data of 290 accessions and 11,912 single nucleotide polymorphisms (SNPs) obtained from the Axiom® Tomato SNP Chip Array. Nine significant SNPs in chromosomes 1, 4, 6, 8, and 12, were selected and five novel QTL regions distinct from previously known PMR-QTL regions were identified. Of these QTL regions, three putative candidate genes for PMR were selected from chromosomes 4 and 8, including two nucleotide binding site-leucine rich repeat class genes and a receptor-like kinase gene, all of which have been identified previously as causative genes for PMR in several crop species. The SNPs discovered in these genes provide useful information for understanding the molecular basis of PMR and developing DNA markers for marker-assisted selection of PMR in tomato.

Funder

Korean Institute of Planning and Evaluation for Technology in Food, Agriculture and Forestry

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Reference70 articles.

1. The tomato powdery mildew fungus Oidium neolycopersici;Jones;Mol. Plant Pathol.,2001

2. Review of tomato powdery mildew—A challenging problem for researchers, breeders and growers;Lebeda;Acta Hortic.,2017

3. Resistance mechanisms of wild tomato germplasm to infection of Oidium neolycopersici;Lebeda;Eur. J. Plant Pathol.,2013

4. Baudoin, W., Nersisyan, A., Shamilov, A., Hodder, A., Gutierrez, D., De Pascale, S., Nicola, S., Gruda, N., Urban, L., and Tanny, J. Good Agricultural Practices for Greenhouse Vegetable Production in the South East European Countries—Principles for Sustainable Intensification of Smallholder Farms, 2017.

5. Genetics and molecular mechanisms of resistance to powdery mildews in tomato (Solanum lycopersicum) and its wild relatives;Seifi;Eur. J. Plant Pathol.,2013

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3