Effect of Polydeoxyribonucleotide (PDRN) Treatment on Corneal Wound Healing in Zebrafish (Danio rerio)

Author:

Edirisinghe Shan LakmalORCID,Nikapitiya Chamilani,Dananjaya S. H. S.ORCID,Park Jungho,Kim Dukgyu,Choi Dongrack,De Zoysa MahanamaORCID

Abstract

This study aimed to develop a corneal epithelial injury model in zebrafish (Danio rerio) and investigate the effectiveness of polydeoxyribonucleotide (PDRN) treatment on in vivo corneal epithelial regeneration and wound healing. Chemical injury to zebrafish cornea was produced by placing a small cotton swab containing 3% acetic acid solution. PDRN treatment was performed by immersing corneal-injured zebrafish in water containing PDRN (2 mg/mL) for 10 min at 0, 24, 48, and 72 h post-injury (hpi). The level of corneal healing was evaluated by fluorescein staining, histological examination, transcriptional profiling, and immunoblotting techniques. Fluorescein staining results demonstrate that PDRN treatment significantly (p < 0.05) reduced the wounded area of the zebrafish eye at 48 and 72 hpi, suggesting that PDRN may accelerate the corneal re-epithelialization. Histopathological evaluation revealed that injured corneal epithelial cells were re-organized at 72 hpi upon PDRN treatment with increased goblet cell density and size. Moreover, transcriptional analysis results demonstrate that PDRN treatment induced the mRNA expression of adora2ab (6.3-fold), pax6a (7.8-fold), pax6b (29.3-fold), klf4 (7.3-fold), and muc2.1 (5.0-fold) after the first treatment. Besides, tnf-α (2.0-fold) and heat-shock proteins (hsp70; 2.8-fold and hsp90ab1; 1.6-fold) have modulated the gene expression following the PDRN treatment. Immunoblotting results convincingly confirmed the modulation of Mmp-9, Hsp70, and Tnf-α expression levels upon PDRN treatment. Overall, our corneal injury model in zebrafish allows for understanding the morphological and molecular events of corneal epithelial healing, and ophthalmic responses for PDRN treatment following acid injury in zebrafish.

Funder

Zerone Bio Inc., Korea

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3