Transcriptome and Metabolome Analysis Provides Insights into the Heterosis of Yield and Quality Traits in Two Hybrid Rice Varieties (Oryza sativa L.)

Author:

Zhou Dahu,Zhou Xinyi,Sun Changhui,Tang Guoping,Liu Lin,Chen Le,He Haohua,Xiong Qiangqiang

Abstract

Heterosis is a common biological phenomenon that is useful for breeding superior lines. Using heterosis to increase the yield and quality of crops is one of the main achievements of modern agricultural science. In this study, we analysed the transcriptome and metabolome of two three-line hybrid rice varieties, Taiyou 871 (TY871), and Taiyou 398 (TY398) and the parental grain endosperm using RNA-seq (three biological repeats per variety) and untargeted metabolomic (six biological repeats per variety) methods. TY871 and TY398 showed specific heterosis in yield and quality. Transcriptome analysis of the hybrids revealed 638 to 4059 differentially expressed genes in the grain when compared to the parents. Metabolome analysis of the hybrids revealed 657 to 3714 differential grain metabolites when compared to the parents. The honeydew1 and grey60 module core genes Os04g0350700 and Os05g0154700 are involved in the regulation of awn development, grain size, and grain number, as well as the regulation of grain length and plant height, respectively. Rice grain length may be an important indicator for improving the quality of three-line hybrid rice. In addition, the rice quality-related metabolite NEG_M341T662 was highly connected to the module core genes Os06g0254300 and Os03g0168100. The functions of Os06g0254300 and Os03g0168100 are EF-hand calcium binding protein and late embroideries absolute protein repeat containing protein, respectively. These genes may play a role in the formation of rice quality. We constructed a gene and metabolite coexpression network, which provides a scientific basis for the utilization of heterosis in producing high-yield and high-quality hybrid rice.

Funder

National Natural Science Foundation of China

Major Science and Technology Research and Development Project of Jiangxi Province

Postgraduate Research & Practice Innovation Program of Jiangsu Province

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3