The Shift in Synonymous Codon Usage Reveals Similar Genomic Variation during Domestication of Asian and African Rice
-
Published:2022-10-25
Issue:21
Volume:23
Page:12860
-
ISSN:1422-0067
-
Container-title:International Journal of Molecular Sciences
-
language:en
-
Short-container-title:IJMS
Author:
Xiao Guilian,Zhou Junzhi,Huo Zhiheng,Wu Tong,Li Yingchun,Li Yajing,Wang Yanxia,Wang Mengcheng
Abstract
The domestication of wild rice occurred together with genomic variation, including the synonymous nucleotide substitutions that result in synonymous codon usage bias (SCUB). SCUB mirrors the evolutionary specialization of plants, but its characteristics during domestication were not yet addressed. Here, we found cytosine- and guanidine-ending (NNC and NNG) synonymous codons (SCs) were more pronounced than adenosine- and thymine-ending SCs (NNA and NNT) in both wild and cultivated species of Asian and African rice. The ratios of NNC/G to NNA/T codons gradually decreased following the rise in the number of introns, and the preference for NNA/T codons became more obvious in genes with more introns in cultivated rice when compared with those in wild rice. SCUB frequencies were heterogeneous across the exons, with a higher preference for NNA/T in internal exons than in terminal exons. The preference for NNA/T in internal but not terminal exons was more predominant in cultivated rice than in wild rice, with the difference between wild and cultivated rice becoming more remarkable with the rise in exon numbers. The difference in the ratios of codon combinations representing DNA methylation-mediated conversion from cytosine to thymine between wild and cultivated rice coincided with their difference in SCUB frequencies, suggesting that SCUB reveals the possible association between genetic and epigenetic variation during the domestication of rice. Similar patterns of SCUB shift in Asian and African rice indicate that genomic variation occurs in the same non-random manner. SCUB representing non-neutral synonymous mutations can provide insight into the mechanism of genomic variation in domestication and can be used for the genetic dissection of agricultural traits in rice and other crops.
Funder
National Natural Science Foundation of China
Key Project of Natural Science Foundation of Shandong
Subject
Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献