Quercetin and Isorhamnetin Reduce Benzo[a]pyrene-Induced Genotoxicity by Inducing RAD51 Expression through Downregulation of miR−34a

Author:

Kim MinORCID,Jee Seung-CheolORCID,Shin Min-KyoungORCID,Han Dong-Hee,Bu Kyung-Bin,Lee Seung-CheolORCID,Jang Bo-Young,Sung Jung-Suk

Abstract

Benzo[a]pyrene (B[a]P) is metabolized in the liver into highly reactive mutagenic and genotoxic metabolites, which induce carcinogenesis. The mutagenic factors, including B[a]P-7,8-dihydrodiol-9,10-epoxide (BPDE) and reactive oxygen species, generated during B[a]P metabolism can cause DNA damage, such as BPDE-DNA adducts, 8-oxo-dG, and double-strand breaks (DSBs). In this study, we mechanistically investigated the effects of quercetin and its major metabolite isorhamnetin on the repair of B[a]P-induced DNA DSBs. Whole−transcriptome analysis showed that quercetin and isorhamnetin each modulate the expression levels of genes involved in DNA repair, especially those in homologous recombination. RAD51 was identified as a key gene whose expression level was decreased in B[a]P−treated cells and increased by quercetin or isorhamnetin treatment. Furthermore, the number of γH2AX foci induced by B[a]P was significantly decreased by quercetin or isorhamnetin, whereas RAD51 mRNA and protein levels were increased. Additionally, among the five microRNAs (miRs) known to downregulate RAD51, miR−34a level was significantly downregulated by quercetin or isorhamnetin. The protective effect of quercetin or isorhamnetin was lower in cells transfected with a miR−34a mimic than in non−transfected cells, and the B[a]P-induced DNA DSBs remained unrepaired. Our results show that quercetin and isorhamnetin each upregulates RAD51 by downregulating miR−34a and thereby suppresses B[a]P-induced DNA damage.

Funder

National Research Foundation of Korea

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3