Author:
Chen Xijun,Shi Tong,Tang Tao,Chen Chen,Liang You,Zuo Shimin
Abstract
Rhizoctonia solani is one of the important pathogenic fungi causing several serious crop diseases, such as maize and rice sheath blight. Current methods used to control the disease mainly depend on spraying fungicides because there is no immunity or high resistance available in crops. Spraying double-strand RNA (dsRNA) for induced-gene silencing (SIGS) is a new potentially sustainable and environmentally friendly tool to control plant diseases. Here, we found that fluorescein-labelled EGFP-dsRNA could be absorbed by R. solani in co-incubation. Furthermore, three dsRNAs, each targeting one of pathogenicity-related genes, RsPG1, RsCATA, and RsCRZ1, significantly downregulated the transcript levels of the target genes after co-incubation, leading to a significant reduction in the pathogenicity of the fungus. Only the spray of RsCRZ1 dsRNA, but not RsPG1 or RsCATA dsRNA, affected fungal sclerotium formation. dsRNA stability on leaf surfaces and its efficiency in entering leaf cells were significantly improved when dsRNAs were loaded on layered double hydroxide (LDH) nanosheets. Notably, the RsCRZ1-dsRNA-LDH approach showed stronger and more lasting effects than using RsCRZ1-dsRNA alone in controlling pathogen development. Together, this study provides a new potential method to control crop diseases caused by R. solani.
Funder
R&D Foundation of Jiangsu Province, China
Fund for Independent Innovation of Agricultural Science in Jiang Province, China
Science and Technology Project of Jiangsu province, China
Subject
Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献