The PINK1 p.Asn521Thr Variant Is Associated with Earlier Disease Onset in GRN/C9orf72 Frontotemporal Lobar Degeneration

Author:

Rossi GiacominaORCID,Salvi ErikaORCID,Benussi LuisaORCID,Mehmeti ElkadiaORCID,Geviti AndreaORCID,Bellini SoniaORCID,Longobardi AntonioORCID,Facconi AlessandroORCID,Carrara Matteo,Bonvicini CristianORCID,Nicsanu RolandORCID,Saraceno ClaudiaORCID,Ricci Martina,Giaccone Giorgio,Binetti Giuliano,Ghidoni RobertaORCID

Abstract

Genetic frontotemporal lobar degeneration (FTLD) is characterized by heterogeneous phenotypic expression, with a disease onset highly variable even in patients carrying the same mutation. Herein we investigated if variants in lysosomal genes modulate the age of onset both in FTLD due to GRN null mutations and C9orf72 expansion. In a total of 127 subjects (n = 74 GRN mutations and n = 53 C9orf72 expansion carriers), we performed targeted sequencing of the top 98 genes belonging to the lysosomal pathway, selected based on their high expression in multiple brain regions. We described an earlier disease onset in GRN/C9orf72 pedigrees in subjects carrying the p.Asn521Thr variant (rs1043424) in PTEN-induced kinase 1 (PINK1), a gene that is already known to be involved in neurodegenerative diseases. We found that: (i) the PINK1 rs1043424 C allele is significantly associated with the age of onset; (ii) every risk C allele increases hazard by 2.11%; (iii) the estimated median age of onset in homozygous risk allele carriers is 10–12 years earlier than heterozygous/wild type homozygous subjects. A replication study in GRN/C9orf72 negative FTLD patients confirmed that the rs1043424 C allele was associated with earlier disease onset (−5.5 years in CC versus A carriers). Understanding the potential mechanisms behind the observed modulating effect of the PINK1 gene in FTLD might prove critical for identifying biomarkers and/or designing drugs to modify the age of onset, especially in GRN/C9orf72-driven disease.

Funder

Italian Ministry of Health, Italy, Ricerca Finalizzata

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3