Abstract
Amino acids, which are important compatible solutes, play a significant role in probiotic lyophilization. However, studies on the functions of Bifidobacterium during freeze-drying are limited. Therefore, in this study, we compared the freeze-drying survival rate of Bifidobacterium longum CCFM 1029 cultivated in different media containing different kinds of compatible solutes. We found that the addition of 21 g/L proline to the culture media substantially improved the freeze-drying survival rate of B. longum CCFM 1029 from 18.61 ± 0.42% to 38.74 ± 1.58%. Interestingly, this change has only been observed when the osmotic pressure of the external culture environment is increased. Under these conditions, we found that proline accumulation in this strain increased significantly. This change also helped the strain to maintain its membrane integrity and the activity of some key enzymes during freeze-drying. Overall, these results show that the addition of proline can help the strain resist a tough environment during lyophilization. The findings of this study provide preliminary data for producers of probiotics who wish to achieve higher freeze-drying survival rates during industrial production.
Funder
National Key R&D Program of China
National Natural Science Foundation of China
Subject
Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献