Granulocytic MDSC with Deficient CCR5 Alleviates Lipogenesis and Inflammation in Nonalcoholic Fatty Liver Disease

Author:

Liao Tzu-ChiehORCID,Huang Jiung-Pang,Tsai Yu-TingORCID,Shih Wei-Ching,Juan Chi-Chang,Hsieh Po-ShiuanORCID,Hung Li-Man,Yu Chao-LanORCID

Abstract

C-C chemokine receptor type 5 (CCR5) positively contributes to the pathogenesis of nonalcoholic fatty liver disease (NAFLD), a common metabolic liver disease associated with chronic inflammation. CCR5 signaling also facilitates the immunosuppressive activity of a group of immature myeloid cells known as granulocytic myeloid-derived suppressor cells (g-MDSCs). While both hepatocyte and g-MDSC express CCR5, how CCR5 coordinates these two distinct cell types in the hepatic microenvironment remains largely unknown. Here, we used in vivo and ex vivo approaches to define the molecular details of how CCR5 mediates the crosstalk between hepatocytes and g-MDSCs in a mouse model of NAFLD. Global CCR5-deficient mice exhibited more severe steatosis, increased hepatic gene expression of lipogenesis, and exacerbated liver damage in diet-induced obesity. Either NAFLD or CCR5-deficiency per se is causative for the increase of g-MDSCs. Purified g-MDSCs have a higher survival rate in the fatty liver microenvironment, and blockade of CCR5 significantly decreases g-MDSCs’ expression of anti-inflammatory factors. On the other hand, the null of CCR5 signaling increases hepatocytes’ expression of lipogenic genes in the NAFLD microenvironment. Most importantly, inhibiting g-MDSCs’ CCR5 signaling in the fatty liver microenvironment dramatically reduces STAT3 signaling, lipogenic, and pro-inflammatory gene expression in primary hepatocytes. Adoptive cell transfer experiments further demonstrate that CCR5-deficient g-MDSCs mitigate hepatic lipogenic gene expression without facilitating pro-inflammatory cytokine production and liver damage in NAFLD mice. These results suggest that targeting g-MDSCs’ CCR5 signaling might serve as a potential therapeutic strategy for NAFLD.

Funder

Ministry of Science and Technology, Taiwan

Chang Gung Medical Research Foundation

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3