Genome-Wide Identification and Expression Analysis of Senescence-Associated Genes in Grapevine (Vitis vinifera L.) Reveal Their Potential Functions in Leaf Senescence Order

Author:

Li You-MeiORCID,Sun Meng-Hao,Tang Xuan-Si,Wang Chao-Ping,Xie Zhao-Sen

Abstract

Natural leaf senescence is an acclimation strategy that enables plants to reallocate nutrients. In the present study, interestingly, we found that the basal mature leaves of grapevine primary shoots (P) exhibited the earliest senescence, followed by the apical young leaves of secondary shoots (ST), and then the basal mature leaves of secondary shoots (S). The Chl level decreased with the extent of leaf senescence. According to the genome-wide identification and expression analysis, sixteen senescence-associated genes (SAGs) involved in Chl breakdown were identified in the grapevine genome. Their expression patterns showed that the transcript changes in VvSGR, VvPPH2, and VvFtsH6-2 corresponded to the changes in Chl content among P, S, and ST. The changes in the transcription of VvNYC1, VvSGR, VvPAO1, VvPAO2, VvPAO4, VvPPH1, VvPPH3, and VvFtsH6-1 only contributed to low Chl levels in P. The cis-element analysis indicated that these SAGs possessed several light- and hormone-responsive elements in their promoters. Among them, ABA-responsive elements were found in twelve of the sixteen promoters of SAGs. Correspondingly, ABA-signaling components presented various changes in transcription among P, S, and ST. The transcription changes in VvbZIP45 and VvSnRK2.1 were similar to those in VvSGR, VvPPH2, and VvFtsH6-2. The other nine ABA-signaling components, which included VvRCAR2, VvRCAR4, VvRCAR6, VvRCAR7, VvRCAR2, VvPP2C4, VvPP2C9, VvbZIP25, and VvSnRK2.3, were highly expressed in P but there was no difference between S and ST, with similar expression patterns for VvNYC1, VvSGR, VvPAO1, VvPAO2, VvPAO4, VvPPH1, VvPPH3, and VvFtsH6-1. These results suggested that the senescence of P and ST could be regulated by different members of Chl breakdown-related SAGs and ABA-signaling components. These findings provide us with important candidate genes to further study the regulation mechanism of leaf senescence order in grapevine.

Funder

National Natural Science Foundation of China

‘Lvyangjinfeng’ project of Yangzhou city

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3