Abstract
Microglial cells represent the resident immune elements of the central nervous system, where they exert constant monitoring and contribute to preserving neuronal activity and function. In the context of glioblastoma (GBM), a common type of tumor originating in the brain, microglial cells deeply modify their phenotype, lose their homeostatic functions, invade the tumoral mass and support the growth and further invasion of the tumoral cells into the surrounding brain parenchyma. These modifications are, at least in part, induced by bidirectional communication among microglial and tumoral cells through the release of soluble molecules and extracellular vesicles (EVs). EVs produced by GBM and microglial cells transfer different kinds of biological information to receiving cells, deeply modifying their phenotype and activity and could represent important diagnostic markers and therapeutic targets. Recent evidence demonstrates that in GBM, microglial-derived EVs contribute to the immune suppression of the tumor microenvironment (TME), thus favoring GBM immune escape. In this review, we report the current knowledge on EV formation, biogenesis, cargo and functions, with a focus on the effects of microglia-derived EVs in GBM. What clearly emerges from this analysis is that we are at the beginning of a full understanding of the complete picture of the biological effects of microglial-derived EVs and that further investigations using multidisciplinary approaches are necessary to validate their use in GBM diagnosis and therapy.
Funder
Sapienza University of Rome
Italian Ministry of University
AIRC Foundation for Cancer Research in Italy
Italian Ministry of Health
Subject
Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献