Genome-Wide Characterization of Chrysanthemum indicum Nuclear Factor Y, Subunit C Gene Family Reveals the Roles of CiNF-YCs in Flowering Regulation

Author:

Wang Xueting,Yao Yao,Wen Shiyun,Bin Jing,Tan Qinghua,Lou Jinpeng,Xie Li,Zeng Ruizhen,Guo Herong,Zhang Zhisheng,Wei QianORCID

Abstract

Nuclear Factor Y, Subunit C (NF-YC) transcription factors are conserved in most plants, and play essential roles in plant growth and development, especially in flowering regulation. Chrysanthemums are important commercial plants, and their market value is strongly impacted by flowering time. Until now, no details regarding the NF-YC family in the Chrysanthemum genus have been available. In this study, five NF-YC genes were cloned from Chrysanthemum indicum. Multiple alignments showed that CiNF-YCs had the highly conserved characteristic regions. Phylogenetic analyses identified a pair of paralogue NF-YC proteins in chrysanthemums. Gene structure and conserved motifs were also analyzed for functional understanding. According to the results of the expression experiments, CiNF-YC1 and CiNF-YC5 were mainly expressed in leaves or flowers, and their expression levels varied greatly from the seedling to flower bud differentiation stage. Arabidopsis overexpressing CiNF-YC1 and CiNF-YC3 showed significantly delayed flowering, accompanied by other morphological alterations. RT-qPCR analysis revealed that genes associated with photoperiod, vernalization, aging, and gibberellin pathways were downregulated in CiNF-YC1-OX lines, relative to the wild type, whereas in CiNF-YC3-OX lines, only SHORT VEGETATIVE PHASE (AtSVP), the key factor in the ambient temperature pathway, was upregulated. Taken together, these findings suggest that CiNF-YC1 and CiNF-YC3 negatively regulate flowering in Arabidopsis via different flowering pathways.

Funder

National Key R&D Program of China

Natural Science Foundation of Guangdong Province of China

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3