New Molecules of Diterpene Origin with Inhibitory Properties toward α-Glucosidase

Author:

Tretyakova Elena,Smirnova Irina,Kazakova OxanaORCID,Nguyen Ha Thi Thu,Shevchenko Alina,Sokolova Elena,Babkov DenisORCID,Spasov AlexanderORCID

Abstract

The incidence of diabetes mellitus (DM), one of the most common chronic metabolic disorders, has increased dramatically over the past decade and has resulted in higher rates of morbidity and mortality worldwide. The enzyme, α-Glucosidase (α-GLy), is considered a therapeutic target for the treatment of type 2 DM. Herein, we synthesized arylidene, heterocyclic, cyanoetoxy- and propargylated derivatives of quinopimaric acid (levopimaric acid diene adduct with p-benzoquinone) 1–50 and, first, evaluated their ability to inhibit α-GLy. Among the tested compounds, quinopimaric acid 1, 2,3-dihydroquinopimaric acid 8 and its amide and heterocyclic derivatives 9, 30, 33, 39, 44, with IC50 values of 35.57–65.98 μM, emerged as being good inhibitors of α-GLy. Arylidene 1β-hydroxy and 1β,13α-epoxy methyl dihydroquinopimarate derivatives 6, 7, 26–29, thiadiazole 32, 1a,4a-dehydroquinopimaric acid 40 and its indole, nitrile and propargyl hybrids 35–38, 42, 45, 48, and 50 showed excellent inhibitory activities. The most active compounds 38, 45, 48, and 50 displayed IC50 values of 0.15 to 0.68 μM, being 1206 to 266 more active than acarbose (IC50 of 181.02 μM). Kinetic analysis revealed the most active diterpene indole with an alkyne substituent 45 as a competitive inhibitor with Ki of 50.45 μM. Molecular modeling supported this finding and suggested that the indole core plays a key role in the binding. Compound 45 also has favorable pharmacokinetic and safety properties, according to the computational ADMET profiling. The results suggested that quinopimaric acid derivatives should be considered as potential candidates for novel alternative therapies in the treatment of type 2 diabetes.

Funder

the Federal program

Vietnam Academy of Science and Technology

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3