Affiliation:
1. Gansu Electric Power Company Marketing Division, Lanzhou 730000, China
2. School of Electrical Engineering, Sichuan University, Chengdu 610065, China
Abstract
An electric railway system is a typical single-phase grid-connected converter system, and the low-frequency oscillation (LFO) phenomenon in electric railway systems has been widely reported around the world. Previous research has indicated that the LFO is a small-signal instability issue caused by impedance mismatching between the traction network system and electric trains. Therefore, this paper proposes an improved q-axis current control method to reshape the train’s impedance. The proposed method can be implemented easily by relating a reverse q-axis reactive current directly to the reference of the q-axis current under the dq current decoupled control. Moreover, considering the additional q-axis reactive current control, a small-signal impedance model of a train–network system is built. The impedance-based analysis results indicate that the proposed q-axis reactive current feedback control can increase the magnitude of the train’s impedance, which is beneficial to enhancing the system’s stability. Finally, this paper employs experimental results to verify the effectiveness of the proposed method.
Funder
State Grid Gansu Electric Power Marketing Service Center Technology Project
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献