Research on Wake Field Characteristics and Support Structure Interference of Horizontal Axis Tidal Stream Turbine

Author:

Zhou Jiayan1,Guo Huijuan1,Zheng Yuan2,Zhang Zhi1,Yuan Cong3,Liu Bin4

Affiliation:

1. College of Water Conservancy and Hydropower Engineering, Hohai University, No. 1 Xikang Road, Nanjing 210098, China

2. College of Energy and Electrical Engineering, Hohai University, Nanjing 210098, China

3. Huaishu New River Management Office of Jiangsu Province, Huaian 223001, China

4. Luoyun Water Conservancy Project Management Divison in Jiangsu Province, Suqian 223800, China

Abstract

The harnessing and utilization of tidal current energy have emerged as prominent topics in scientific inquiry, due to their vast untapped resource potential, leading to numerous investigations into the efficacy of hydrokinetic turbines under various operational conditions. This paper delineates the wake field characteristics and performance of horizontal axis tidal stream turbines under the influence of support structures, using a comprehensively blade-resolved computational fluid dynamics (CFDs) model that employs Reynolds-averaged Navier–Stokes (RANS) equations in combination with the RNG k-ε turbulence model. To achieve this, the study utilized experimental tank tests and numerical simulations to investigate the distribution characteristics and recuperative principles of the turbine’s wake field. The velocity distribution and energy augmentation coefficient of the wake field showed strong agreement with the experimental results. To further assess the effect of support structures on the flow field downstream of the unit and its performance, the hydrodynamic attributes of the turbine wake field were analyzed with and without support structures. The interference elicited by the support structure modified the velocity distribution of the near-wake flow field, resulting in a 4.41% decrease in the turbine’s power coefficient (Cp), significantly impacting the turbine’s instantaneous performance.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3