State-of-Health Prediction of Lithium-Ion Batteries Based on Diffusion Model with Transfer Learning

Author:

Luo Chenqiang1,Zhang Zhendong1,Zhu Shunliang2,Li Yongying1

Affiliation:

1. College of Mechanical Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China

2. Shanghai Motor Vehicle Inspection Certification & Tech Innovation Center Co., Ltd., Shanghai 201805, China

Abstract

An accurate state-of-health (SOH) prediction of lithium-ion batteries (LIBs) is crucial to their safe and reliable. Although recently the data-driven methods have drawn great attention, owe to its efficient deep learning, it is worthwhile to continue devoting many efforts to prediction performance. In practice, fast charging mode has been widely applied in battery replenishing, which poses challenges for SOH prediction due to the diversity of charging conditions and electrochemical properties of LIBs; although, the process is stable and detectable. Furthermore, most previous data-driven prediction methods based discriminative model cannot describe the whole picture of the problem though sample data, affecting robustness of model in real-life applications. In this study, it is presented a SOH prediction model based on diffusion model, as an efficient new family of deep generative model, with time series information tackled through Bi-LSTM and the features derived from the voltage profiles in multi-stage charging process, which can identify distribution characteristics of training data accurately. The model is further refined by means of transfer learning, by adding a featured transformation from the base model for SOH prediction of different type LIBs. Two different types of LIBs datasets are used to evaluate the proposed model and the verified results revealed its better performance than those of other methods, reducing efforts required to collect data cycles of new battery types with the generality and robustness.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3