Burn Severity Assessment Using Sentinel-1 SAR in the Southeast Peruvian Amazon, a Case Study of Madre de Dios

Author:

Alarcon-Aguirre GabrielORCID,Miranda Fidhel Reynaldo Fabrizzio,Ramos Enciso Dalmiro,Canahuire-Robles RembrandtORCID,Rodriguez-Achata LisetORCID,Garate-Quispe JorgeORCID

Abstract

Fire is one of the significant drivers of vegetation loss and threat to Amazonian landscapes. It is estimated that fires cause about 30% of deforested areas, so the severity level is an important factor in determining the rate of vegetation recovery. Therefore, the application of remote sensing to detect fires and their severity is fundamental. Radar imagery has an advantage over optical imagery because radar can penetrate clouds, smoke, and rain and can see at night. This research presents algorithms for mapping the severity level of burns based on change detection from Sentinel-1 backscatter data in the southeastern Peruvian Amazon. Absolute, relative, and Radar Forest Degradation Index (RDFI) predictors were used through singular polarization length (dB) patterns (Vertical, Vertical-VV and Horizontal, Horizontal-HH) of vegetation and burned areas. The Composite Burn Index (CBI) determined the algorithms’ accuracy. The burn severity ratios used were estimated to be approximately 40% at the high level, 43% at the moderate level, and 17% at the low level. The validation dataset covers 384 locations representing the main areas affected by fires, showing the absolute and relative predictors of cross-polarization (k = 0.734) and RDFI (k = 0.799) as the most concordant in determining burn severity. Overall, the research determines that Sentinel-1 cross-polarized (VH) data has adequate accuracy for detecting and quantifying burns.

Publisher

MDPI AG

Subject

Earth and Planetary Sciences (miscellaneous),Safety Research,Environmental Science (miscellaneous),Safety, Risk, Reliability and Quality,Building and Construction,Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3