Transcriptome Sequencing and WGCNA Reveal Key Genes in Response to Leaf Blight in Poplar

Author:

Wang Ruiqi1ORCID,Wang Yuting1,Yao Wenjing12ORCID,Ge Wengong2,Jiang Tingbo1,Zhou Boru1

Affiliation:

1. State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China

2. Co-Innovation Center for Sustainable Forestry in Southern China, Bamboo Research Institute, Nanjing Forestry University, Nanjing 210037, China

Abstract

Leaf blight is a fungal disease that mainly affects the growth and development of leaves in plants. To investigate the molecular mechanisms of leaf blight defense in poplar, we performed RNA-Seq and enzyme activity assays on the Populus simonii × Populus nigra leaves inoculated with Alternaria alternate fungus. Through weighted gene co-expression network analysis (WGCNA), we obtained co-expression gene modules significantly associated with SOD and POD activities, containing 183 and 275 genes, respectively. We then constructed a co-expression network of poplar genes related to leaf blight resistance based on weight values. Additionally, we identified hub transcription factors (TFs) and structural genes in the network. The network was dominated by 15 TFs, and four out of them, including ATWRKY75, ANAC062, ATMYB23 and ATEBP, had high connectivity in the network, which might play important functions in leaf blight defense. In addition, GO enrichment analysis revealed a total of 44 structural genes involved in biotic stress, resistance, cell wall and immune-related biological processes in the network. Among them, there were 16 highly linked structural genes in the central part, which may be directly involved in poplar resistance to leaf blight. The study explores key genes associated with leaf blight defense in poplar, which further gains an understanding of the molecular mechanisms of biotic stress response in plants.

Funder

Major Project of Agricultural Biological Breeding

Fundamental Research Funds for the Central Universities

Innovative Experimental Projects for University Students

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3