Genome-Wide Analysis of the PHT Gene Family and Its Response to Mycorrhizal Symbiosis in Tomatoes under Phosphate Starvation Conditions

Author:

Rui Wenjing1,Ma Jing1,Wei Ning1,Zhu Xiaoya1,Li Zhifang1ORCID

Affiliation:

1. Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Science, College of Horticulture, China Agricultural University (CAU), Yuanmingyuan Xilu 2, Haidian District, Beijing 100193, China

Abstract

Phosphate is one of the essential mineral nutrients. Phosphate transporter genes (PHTs) play an important role in Pi acquisition and homeostasis in tomato plants. However, basic biological information on PHT genes and their responses of symbiosis with arbuscular mycorrhizal in the genome remains largely unknown. We analyzed the physiological changes and PHT gene expression in tomatoes (Micro-Tom) inoculated with arbuscular mycorrhizal (AM) fungi (Funneliformis mosseae) under different phosphate conditions (P1: 0 µM, P2: 25 µM, and P3: 200 µM Pi). Twenty-three PHT genes were identified in the tomato genomics database. Protein sequence alignment further divided the 23 PHT genes into three groups, with similar classifications of exons and introns. Good colonization of plants was observed under low phosphate conditions (25 µM Pi), and Pi stress and AM fungi significantly affected P and N accumulation and root morphological plasticity. Moreover, gene expression data showed that genes in the SlPHT1 (SlPT3, SlPT4, and SlPT5) gene family were upregulated by Funneliformis mosseae under all conditions, which indicated that these gene levels were significantly increased with AM fungi inoculation. None of the analyzed SlPHT genes in the SlPH2, SlPHT3, SlPHT4, and SlPHO gene families were changed at any Pi concentration. Our results indicate that inoculation with AM fungi mainly altered the expression of the PHT1 gene family. These results will lay a foundation for better understanding the molecular mechanisms of inorganic phosphate transport under AM fungi inoculation.

Funder

Beijing Innovation Consortium of Agriculture Research Systems project

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3