A Pilot Study to Detect Viable Salmonella spp. in Diarrheal Stool Using Viability Real-Time PCR as a Culture-Independent Diagnostic Tool in a Clinical Setting

Author:

Thilakarathna Surangi H.1,Chui Linda12ORCID

Affiliation:

1. Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB T6G 1C9, Canada

2. Alberta Precision Laboratories, Public Health Laboratory (ProvLab), Edmonton, AB T6G 2J2, Canada

Abstract

Frontline laboratories are adopting culture-independent diagnostic testing (CIDT) such as nucleic acid amplification tests (NAATs) due to numerous advantages over culture-based testing methods. Paradoxically, the viability of pathogens, a crucial factor determining active infections, cannot be confirmed with current NAATs alone. A recent development of viability PCR (vPCR) was introduced to mitigate this limitation associated with real-time PCR (qPCR) by using a DNA-intercalating dye to remove residual and dead cell DNA. This study assessed the applicability of the vPCR assay on diarrheal stools. Eighty-five diarrheal stools confirmed for Salmonellosis were tested via qPCR and vPCR using in-house primers and probe targeting the invA gene. vPCR-negative stools (Ct cut off > 31) were enriched in mannitol selenite broth (MSB) to verify low bacterial loads. vPCR assay showed ~89% sensitivity (qPCR- and vPCR-positive stools: 76/85). vPCR-negative stools (9/85; qPCR-positive: 5; qPCR-negative: 4) were qPCR- and culture-positive post-MSB-enrichment and confirmed the presence of low viable bacterial loads. Random sampling error, low bacterial loads, and receiving stools in batches could contribute to false negatives. This is a pilot study and further investigations are warranted to explore vPCR to assess pathogen viability in a clinical setting, especially when culture-based testing is unavailable.

Funder

Alberta Results Driven Agriculture Research–RDAR

Alberta Health Services (AHS) Residual Funds

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3