Comparative Analysis of Water-Soluble Polysaccharides from Dendrobium Second Love ‘Tokimeki’ and Dendrobium nobile in Structure, Antioxidant, and Anti-Tumor Activity In Vitro

Author:

Ye Guangying1ORCID,Zhang Jinhui1,Xu Xiaoli2,Zeng Canbiao1,Ye Qingsheng3,Wang Zaihua1

Affiliation:

1. Guangdong Key Lab of Ornamental Plant Germplasm Innovation and Utilization, Institute of Environmental Horticulture, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China

2. Instrumental Analysis and Research Center, South China Agricultural University, Guangzhou 510642, China

3. Guangdong Province Key Lab for Biotechnology of Plant Development, College of Life Science, South China Normal University, Guangzhou 510631, China

Abstract

With potential anti-tumor and antioxidant properties, the polysaccharide content of D. nobile is relatively lower than that of the other medicinal Dendrobium. To find high-content polysaccharide resources, the polysaccharide (DHPP-Ⅰs) was prepared from D. Second Love ‘Tokimeki’ (a D. nobile hybrid) and compared with DNPP-Ⅰs from D. nobile. DHPP-Is (Mn 31.09 kDa) and DNPP-Is (Mn 46.65 kDa) were found to be O-acetylated glucomannans (-Glcp-(1,4) and O-acetylated-D-Manp-(1,4) backbones), analogous to other Dendrobium polysaccharides. DHPP-Ⅰs had higher glucose content (31.1%) and a lower degree (0.16) of acetylation than DNPP-Ⅰs (15.8%, 0.28). Meanwhile, DHPP-Ⅰs and DNPP-Ⅰs had the same ability in the radical scavenging assay, which was milder than the control of Vc. Both DHPP-Is and DNPP-Is inhibited SPC-A-1 cell proliferation in vitro, with obvious differences in dose concentrations (0.5–2.0 mg/mL) and treatment times (24–72 h). Therefore, the antioxidant activity of DHPP-Ⅰs and DNPP-Ⅰs is not associated with distinction in anti-proliferative activity. As a glucomannan derived from non-medicinal Dendrobium, DHPP-Ⅰs has similar bioactivity to other medicinal Dendrobium, and this could serve as a starting point for studying the conformational–bioactivity relationship of Dendrobium polysaccharides.

Funder

Fund of Guangdong Science Plan

Guangzhou Fundamental Plan Project

Collaborative Innovation Center Project of Guangdong Academy of Agricultural Sciences

Science and Technology Innovation Strategy Project

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3