Strontium Attenuates Hippocampal Damage via Suppressing Neuroinflammation in High-Fat Diet-Induced NAFLD Mice

Author:

Wang Shuai1,Zeng Fangyuan1,Ma Yue1,Yu Jiaojiao1,Xiang Chenyao1,Feng Xiao1,Wang Songlin1,Wang Jianguo1,Zhao Shanting1ORCID,Zhu Xiaoyan1

Affiliation:

1. College of Veterinary Medicine, Northwest A&F University, Yangling, Xianyang 712100, China

Abstract

Non-alcoholic fatty liver disease (NAFLD) leads to hippocampal damage and causes a variety of physiopathological responses, including the induction of endoplasmic reticulum stress (ERS), neuroinflammation, and alterations in synaptic plasticity. As an important trace element, strontium (Sr) has been reported to have antioxidant effects, to have anti-inflammatory effects, and to cause the inhibition of adipogenesis. The present study was undertaken to investigate the protective effects of Sr on hippocampal damage in NAFLD mice in order to elucidate the underlying mechanism of Sr in NAFLD. The mouse model of NAFLD was established by feeding mice a high-fat diet (HFD), and the mice were treated with Sr. In the NAFLD mice, we found that treatment with Sr significantly increased the density of c-Fos+ cells in the hippocampus and inhibited the expression of caspase-3 by suppressing ERS. Surprisingly, the induction of neuroinflammation and the increased expression of inflammatory cytokines in the hippocampus following an HFD were attenuated by Sr treatment. Sr significantly attenuated the activation of microglia and astrocytes induced by an HFD. The expression of phospho-p38, ERK, and NF-κB was consistently significantly increased in the HFD group, and treatment with Sr decreased their expression. Moreover, Sr prevented HFD-induced damage to the ultra-structural synaptic architecture. This study implies that Sr has beneficial effects on repairing the damage to the hippocampus induced by an HFD, revealing that Sr could be a potential candidate for protection from neural damage caused by NAFLD.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3