Exploring the Inhibitory Effect of AgBiS2 Nanoparticles on Influenza Viruses

Author:

Yang Junlei12,Yue Lihuan34,Shen Bei3,Yang Zhu12,Shao Jiang5,Miao Yuqing1,Ouyang Ruizhuo1ORCID,Hu Yihong23ORCID

Affiliation:

1. Institute of Bismuth and Rhenium Science, School Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China

2. Institut Pasteur of Shanghai, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China

3. CAS Key Laboratory of Molecular Virology & Immunology, Institutional Center for Shared Technologies and Facilities, Pathogen Discovery and Big Data Platform, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China

4. School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China

5. Institutional Center for Shared Technologies and Facilities of Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China

Abstract

Influenza viruses are respiratory pathogens that are major threats to human health. Due to the emergence of drug-resistant strains, the use of traditional anti-influenza drugs has been hindered. Therefore, the development of new antiviral drugs is critical. In this article, AgBiS2 nanoparticles were synthesized at room temperature, using the bimetallic properties of the material itself to explore its inhibitory effect on the influenza virus. By comparing the synthesized Bi2S3 and Ag2S nanoparticles, it is found that after adding the silver element, the synthesized AgBiS2 nanoparticles have a significantly better inhibitory effect on influenza virus infection than Bi2S3 and Ag2S nanoparticles. Recent studies have shown that the inhibitory effect of AgBiS2 nanoparticles on the influenza virus mainly occurs in the stages of influenza virus-cell internalization and intracellular replication. In addition, it is found that AgBiS2 nanoparticles also have prominent antiviral properties against α and β coronaviruses, indicating that AgBiS2 nanoparticles have significant potential in inhibiting viral activity.

Funder

Open Foundation of National Virus Resource Center

China National Mega-projects for Infectious Diseases

Natural Science Foundation of Shanghai

Clinical research project of Shanghai Municipal Health Commission

Scientific research program of Shanghai Science and Technology Commission

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3