Antioxidant Genetic Variants Modify Echocardiography Indices in Long COVID

Author:

Asanin Milika12,Ercegovac Marko13,Krljanac Gordana12,Djukic Tatjana14ORCID,Coric Vesna14ORCID,Jerotic Djurdja14,Pljesa-Ercegovac Marija14ORCID,Matic Marija14,Milosevic Ivana15ORCID,Viduljevic Mihajlo2ORCID,Stevanovic Goran15,Ranin Jovan15ORCID,Simic Tatjana146ORCID,Bukumiric Zoran17ORCID,Savic-Radojevic Ana14ORCID

Affiliation:

1. Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia

2. Clinic of Cardiology, Clinical Centre of Serbia, 11000 Belgrade, Serbia

3. Clinic of Neurology, Clinical Centre of Serbia, 11000 Belgrade, Serbia

4. Institute of Medical and Clinical Biochemistry, 11000 Belgrade, Serbia

5. Clinic of Infectious and Tropical Diseases, Clinical Centre of Serbia, 11000 Belgrade, Serbia

6. Department of Medical Sciences, Serbian Academy of Sciences and Arts, 11000 Belgrade, Serbia

7. Institute of Medical Statistics and Informatics, 11000 Belgrade, Serbia

Abstract

Although disturbance of redox homeostasis might be responsible for COVID-19 cardiac complications, this molecular mechanism has not been addressed yet. We have proposed modifying the effects of antioxidant proteins polymorphisms (superoxide dismutase 2 (SOD2), glutathione peroxidase 1 (GPX1), glutathione peroxidase 3 (GPX3) and nuclear factor erythroid 2-related factor 2, (Nrf2)) in individual susceptibility towards the development of cardiac manifestations of long COVID-19. The presence of subclinical cardiac dysfunction was assessed via echocardiography and cardiac magnetic resonance imaging in 174 convalescent COVID-19 patients. SOD2, GPX1, GPX3 and Nrf2 polymorphisms were determined via the appropriate PCR methods. No significant association of the investigated polymorphisms with the risk of arrhythmia development was found. However, the carriers of variant GPX1*T, GPX3*C or Nrf2*A alleles were more than twice less prone for dyspnea development in comparison with the carriers of the referent ones. These findings were even more potentiated in the carriers of any two variant alleles of these genes (OR = 0.273, and p = 0.016). The variant GPX alleles were significantly associated with left atrial and right ventricular echocardiographic parameters, specifically LAVI, RFAC and RV-EF (p = 0.025, p = 0.009, and p = 0.007, respectively). Based on the relation between the variant SOD2*T allele and higher levels of LV echocardiographic parameters, EDD, LVMI and GLS, as well as troponin T (p = 0.038), it can be proposed that recovered COVID-19 patients, who are the carriers of this genetic variant, might have subtle left ventricular systolic dysfunction. No significant association between the investigated polymorphisms and cardiac disfunction was observed when cardiac magnetic resonance imaging was performed. Our results on the association between antioxidant genetic variants and long COVID cardiological manifestations highlight the involvement of genetic propensity in both acute and long COVID clinical manifestations.

Funder

Special Research Program on COVID-19, entitled AntioxIdentification, Science Fund of the Republic of Serbia

Ministry of Science, Technological Development and Innovation of the Republic of Serbia

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3