Mechanical Mechanism of Ion and Water Molecular Transport through Angstrom-Scale Graphene Derivatives Channels: From Atomic Model to Solid-Liquid Interaction

Author:

Fan Lei1ORCID

Affiliation:

1. School of Civil Engineering and Architecture, Zhejiang University of Science & Technology, Hangzhou 310023, China

Abstract

Ion and water transport at the Angstrom/Nano scale has always been one of the focuses of experimental and theoretical research. In particular, the surface properties of the angstrom channel and the solid-liquid interface interaction will play a decisive role in ion and water transport when the channel size is small to molecular or angstrom level. In this paper, the chemical structure and theoretical model of graphene oxide (GO) are reviewed. Moreover, the mechanical mechanism of water molecules and ions transport through the angstrom channel of GO are discussed, including the mechanism of intermolecular force at a solid/liquid/ion interface, the charge asymmetry effect and the dehydration effect. Angstrom channels, which are precisely constructed by two-dimensional (2D) materials such as GO, provide a new platform and idea for angstrom-scale transport. It provides an important reference for the understanding and cognition of fluid transport mechanism at angstrom-scale and its application in filtration, screening, seawater desalination, gas separation and so on.

Funder

Doctoral program of Zhejiang University of Science and Technology

Natural Science Foundation of Zhejiang Province

Special Fund Project of Zhejiang University of Science and Technology’s Basic Scientific Research Business Expenses

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3