New Allosteric Modulators of AMPA Receptors: Synthesis and Study of Their Functional Activity by Radioligand-Receptor Binding Analysis

Author:

Golubeva Elena A.1,Lavrov Mstislav I.1,Veremeeva Polina N.1,Vyunova Tatiana V.2,Shevchenko Konstantin V.2,Topchiy Maxim A.3ORCID,Asachenko Andrey F.3ORCID,Palyulin Vladimir A.1ORCID

Affiliation:

1. Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia

2. Laboratory of Molecular Pharmacology of Peptides, Institute of Molecular Genetics, National Research Centre Kurchatov Institute, 123182 Moscow, Russia

3. A.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 119991 Moscow, Russia

Abstract

The synthetic approaches to three new AMPA receptor modulators—derivatives of 1,11-dimethyl-3,6,9-triazatricyclo[7.3.1.13,11]tetradecane-4,8,12-trione—had been developed and all steps of synthesis were optimized. The structures of the compounds contain tricyclic cage and indane fragments necessary for binding with the target receptor. Their physiological activity was studied by radioligand-receptor binding analysis using [3H]PAM-43 as a reference ligand, which is a highly potent positive allosteric modulator of AMPA receptors. The results of radioligand-binding studies indicated the high potency of two synthesized compounds to bind with the same targets as positive allosteric modulator PAM-43 (at least on AMPA receptors). We suggest that the Glu-dependent specific binding site of [3H]PAM-43 or the receptor containing this site may be one of the targets of the new compounds. We also suggest that enhanced radioligand binding may indicate the existence of synergistic effects of compounds 11b and 11c with respect to PAM-43 binding to the targets. At the same time, these compounds may not compete directly with PAM-43 for its specific binding sites but bind to other specific sites of this biotarget, changing its conformation and thereby causing a synergistic effect of cooperative interaction. It can be expected that the newly synthesized compounds will also have pronounced effects on the glutamatergic system of the mammalian brain.

Funder

Russian Science Foundation

Program of Scientific Research of the National Research Center “Kurchatov Institute”

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3