Genome-Wide Identification and Expression Analysis of the SPL Gene Family in Three Orchids

Author:

Zhao Xuewei12ORCID,Zhang Mengmeng12,He Xin12,Zheng Qinyao2,Huang Ye2,Li Yuanyuan2,Ahmad Sagheer2ORCID,Liu Dingkun12,Lan Siren12,Liu Zhongjian12ORCID

Affiliation:

1. College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China

2. Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China

Abstract

SPL transcription factors regulate important processes such as plant growth and development, metabolic regulation, and abiotic stress. They play crucial roles in the development of flower organs. However, little is known about the characteristics and functions of the SPLs in the Orchidaceae. In this study, Cymbidium goeringii Rchb. f., Dendrobium chrysotoxum Lindl., and Gastrodia elata BI. were used as research objects. The SPL gene family of these orchids was analyzed on a genome-wide scale, and their physicochemical properties, phylogenetic relationships, gene structures, and expression patterns were studied. Transcriptome and qRT-PCR methods were combined to investigate the regulatory effect of SPLs on the development of flower organs during the flowering process (bud, initial bloom, and full bloom). This study identifies a total of 43 SPLs from C. goeringii (16), D. chrysotoxum (17), and G. elata (10) and divides them into eight subfamilies according to the phylogenetic tree. Most SPL proteins contained conserved SBP domains and complex gene structures; half of the genes had introns longer than 10 kb. The largest number and variety of cis-acting elements associated with light reactions were enriched, accounting for about 45% of the total (444/985); 13/43 SPLs contain response elements of miRNA156. GO enrichment analysis showed that the functions of most SPLs were mainly enriched in the development of plant flower organs and stems. In addition, expression patterns and qRT-PCR analysis suggested the involvement of SPL genes in the regulation of flower organ development in orchids. There was little change in the expression of the CgoSPL in C. goeringii, but DchSPL9 and GelSPL2 showed significant expression during the flowering process of D. chrysotoxum and G. elata, respectively. In summary, this paper provides a reference for exploring the regulation of the SPL gene family in orchids.

Funder

Forestry Peak Discipline Construction Project of Fujian Agriculture and Forestry University

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Reference72 articles.

1. Transcription factors: Bridge between cell signaling and gene regulation;Kholmatov;Proteomics,2021

2. The evolution of gene regulation by transcription factors and microRNAs;Chen;Nat. Rev. Genet.,2007

3. A new family of DNA binding proteins includes putative transcriptional regulators of the Antirrhinum majus floral meristem identity gene SQUAMOSA;Klein;Mol. Genet. Genom.,1996

4. An Arabidopsis SBP-domain fragment with a disrupted C-terminal zinc-binding site retains its tertiary structure;Yamasaki;FEBS Lett.,2006

5. miR156-Regulated SPL transcription factors define an endogenous flowering pathway in Arabidopsis thaliana;Wang;Cell,2009

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3