Identifying the Molecular Drivers of Pathogenic Aldehyde Dehydrogenase Missense Mutations in Cancer and Non-Cancer Diseases

Author:

Jessen-Howard Dana1,Pan Qisheng12ORCID,Ascher David B.12ORCID

Affiliation:

1. School of Chemistry and Molecular Bioscience, University of Queensland, Brisbane, QLD 4072, Australia

2. Computational Biology and Clinical Informatics, Baker Heart and Diabetes Institute, Melbourne, VIC 3004, Australia

Abstract

Human aldehyde dehydrogenases (ALDHs) comprising 19 isoenzymes play a vital role on both endogenous and exogenous aldehyde metabolism. This NAD(P)-dependent catalytic process relies on the intact structural and functional activity of the cofactor binding, substrate interaction, and the oligomerization of ALDHs. Disruptions on the activity of ALDHs, however, could result in the accumulation of cytotoxic aldehydes, which have been linked with a wide range of diseases, including both cancers as well as neurological and developmental disorders. In our previous works, we have successfully characterised the structure–function relationships of the missense variants of other proteins. We, therefore, applied a similar analysis pipeline to identify potential molecular drivers of pathogenic ALDH missense mutations. Variants data were first carefully curated and labelled as cancer-risk, non-cancer diseases, and benign. We then leveraged various computational biophysical methods to describe the changes caused by missense mutations, informing a bias of detrimental mutations with destabilising effects. Cooperating with these insights, several machine learning approaches were further utilised to investigate the combination of features, revealing the necessity of the conservation of ALDHs. Our work aims to provide important biological perspectives on pathogenic consequences of missense mutations of ALDHs, which could be invaluable resources in the development of cancer treatment.

Funder

National Health and Medical Research Council

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3