Five-Aminolevulinic Acid (5-ALA) Induces Heme Oxygenase-1 and Ameliorates Palmitic Acid-Induced Endoplasmic Reticulum Stress in Renal Tubules

Author:

Hamada Shintaro1,Mae Yukari1,Takata Tomoaki1ORCID,Hanada Hinako1,Kubo Misaki1,Taniguchi Sosuke1,Iyama Takuji1,Sugihara Takaaki1ORCID,Isomoto Hajime1

Affiliation:

1. Division of Gastroenterology and Nephrology, Faculty of Medicine, Tottori University, Tottori 683-8504, Japan

Abstract

Steatosis, or ectopic lipid deposition, is the fundamental pathophysiology of non-alcoholic steatohepatitis and chronic kidney disease. Steatosis in the renal tubule causes endoplasmic reticulum (ER) stress, leading to kidney injury. Thus, ER stress could be a therapeutic target in steatonephropathy. Five-aminolevulinic acid (5-ALA) is a natural product that induces heme oxygenase (HO)-1, which acts as an antioxidant. This study aimed to investigate the therapeutic potential of 5-ALA in lipotoxicity-induced ER stress in human primary renal proximal tubule epithelial cells. Cells were stimulated with palmitic acid (PA) to induce ER stress. Cellular apoptotic signals and expression of genes involved in the ER stress cascade and heme biosynthesis pathway were analyzed. The expression of glucose-regulated protein 78 (GRP78), a master regulator of ER stress, increased significantly, followed by increased cellular apoptosis. Administration of 5-ALA induced a remarkable increase in HO-1 expression, thus ameliorating PA-induced GRP78 expression and apoptotic signals. BTB and CNC homology 1 (BACH1), a transcriptional repressor of HO-1, was significantly downregulated by 5-ALA treatment. HO-1 induction attenuates PA-induced renal tubular injury by suppressing ER stress. This study demonstrates the therapeutic potential of 5-ALA against lipotoxicity through redox pathway.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Reference46 articles.

1. Metabolic syndrome and chronic kidney disease: A Japanese perspective on a worldwide problem;Iseki;J. Nephrol.,2008

2. Metabolic syndrome: At the crossroads of cardiorenal risk;Natali;J. Nephrol.,2009

3. Hoyas, I., and Leon-Sanz, M. (2019). Nutritional challenges in metabolic syndrome. J. Clin. Med., 8.

4. Chronic kidney disease as a metabolic syndrome with malnutrition—Need for strict control of risk factors;Shoji;Intern. Med.,2005

5. Annual dialysis data report for 2018, JSDT Renal Data Registry: Survey methods, facility data, incidence, prevalence, and mortality;Nitta;Ren. Replace. Ther.,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3